资源类型

期刊论文 233

会议视频 6

年份

2023 20

2022 19

2021 10

2020 13

2019 15

2018 14

2017 14

2016 23

2015 22

2014 8

2013 6

2012 5

2011 4

2010 6

2009 11

2008 14

2007 15

2006 4

2004 2

2003 1

展开 ︾

关键词

发展战略 5

可持续发展 4

技术预见 3

能源 3

2035年 2

冲刷防护 2

制造强国 2

工程科技 2

战略对策 2

战略研究 2

生态文明 2

细水雾 2

群桩基础 2

食物安全 2

2035 1

2050 1

DX桩 1

DX群桩 1

FDS 1

展开 ︾

检索范围:

排序: 展示方式:

The Group Interaction Field for Learning and Explaining Pedestrian Anticipation

Xueyang Wang,Xuecheng Chen,Puhua Jiang,Haozhe Lin,Xiaoyun Yuan,Mengqi Ji,Yuchen Guo,Ruqi Huang,Lu Fang,

《工程(英文)》 doi: 10.1016/j.eng.2023.05.020

摘要: Anticipating others’ actions is innate and essential in order for humans to navigate and interact well with others in dense crowds. This ability is urgently required for unmanned systems such as service robots and self-driving cars. However, existing solutions struggle to predict pedestrian anticipation accurately, because the influence of group-related social behaviors has not been well considered. While group relationships and group interactions are ubiquitous and significantly influence pedestrian anticipation, their influence is diverse and subtle, making it difficult to explicitly quantify. Here, we propose the group interaction field (GIF), a novel group-aware representation that quantifies pedestrian anticipation into a probability field of pedestrians’ future locations and attention orientations. An end-to-end neural network, GIFNet, is tailored to estimate the GIF from explicit multidimensional observations. GIFNet quantifies the influence of group behaviors by formulating a group interaction graph with propagation and graph attention that is adaptive to the group size and dynamic interaction states. The experimental results show that the GIF effectively represents the change in pedestrians’ anticipation under the prominent impact of group behaviors and accurately predicts pedestrians’ future states. Moreover, the GIF contributes to explaining various predictions of pedestrians’ behavior in different social states. The proposed GIF will eventually be able to allow unmanned systems to work in a human-like manner and comply with social norms, thereby promoting harmonious human–machine relationships.

关键词: Human behavior modeling and prediction     Implicit representation of pedestrian anticipation     Group interaction     Graph neural network    

A review of intelligent optimization for group scheduling problems in cellular manufacturing

《工程管理前沿(英文)》   页码 406-426 doi: 10.1007/s42524-022-0242-0

摘要: Given that group technology can reduce the changeover time of equipment, broaden the productivity, and enhance the flexibility of manufacturing, especially cellular manufacturing, group scheduling problems (GSPs) have elicited considerable attention in the academic and industry practical literature. There are two issues to be solved in GSPs: One is how to allocate groups into the production cells in view of major setup times between groups and the other is how to schedule jobs in each group. Although a number of studies on GSPs have been published, few integrated reviews have been conducted so far on considered problems with different constraints and their optimization methods. To this end, this study hopes to shorten the gap by reviewing the development of research and analyzing these problems. All literature is classified according to the number of objective functions, number of machines, and optimization algorithms. The classical mathematical models of single-machine, permutation, and distributed flowshop GSPs based on adjacent and position-based modeling methods, respectively, are also formulated. Last but not least, outlooks are given for outspread problems and problem algorithms for future research in the fields of group scheduling.

关键词: cellular manufacturing     group scheduling     flowshop     literature review    

Emergence mechanisms of group consensus in social networks

《工程管理前沿(英文)》 doi: 10.1007/s42524-023-0277-x

摘要: Reaching consensus within larger social network groups has emerged as a pivotal concern in the digital age of connectivity. This article redefines group consensus as the emergence of collective intelligence resulting from self-organizing actions and interactions of individuals within a social network group. In our exploration of extant research on group consensus, we illuminate two frequently underestimated, yet noteworthy facets: Dynamism and emergence. In contrast to the conventional perspective of consensus as a mere outcome, we perceive it as an ongoing, dynamic process. This process encompasses self-organized communication and interaction among group members, collectively guiding the group towards cognitive convergence and viewpoint integration. Consequently, it is imperative to redirect our focus from the outcomes of group interactions to an examination of the relationships and processes underpinning consensus formation, thus elucidating the mechanisms responsible for the generation of group consensus. The amalgamation of cognitive contexts and accurate simplification of real-world scenarios for simulation and experimental analysis offers a pragmatic operational approach. This study contributes novel theoretical underpinnings and quantitative insights for establishing and sustaining group consensus within the realm of engineering management practices. Concurrently, it holds substantial importance for advancing the broader research landscape pertaining to social consensus.

关键词: group consensus     social network     collective intelligence    

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0733-z

摘要: Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication (MQL). However, the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence. Here, molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL, MQL, and dry grinding conditions. Three kinds of carbon group nanoparticles, i.e., nanodiamond (ND), carbon nanotube (CNT), and graphene nanosheet (GN), were taken as representative specimens. The [BMIM]BF4 ionic liquid was used as base fluid. The materials used as workpiece and abrasive grain were the single-crystal Ni–Fe–Cr series of Ni-based alloy and single-crystal cubic boron nitride (CBN), respectively. Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions. The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film. Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition, with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face. The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area. Under the nanofluid MQL condition, the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface. The behaviors involved the rolling effect of ND, the rolling and sliding effects of CNT, and the interlayer shear effect of GN. Compared with the findings under the MQL condition, the tangential grinding forces could be further reduced by 8.5%, 12.0%, and 14.1% under the diamond, CNT, and graphene nanofluid MQL conditions, respectively.

关键词: grinding     minimum quantity lubrication     carbon group nanofluid     tribological mechanism    

Reactive power compensation of an isolated hybrid power system with load interaction using ANFIS tuned

Nitin SAXENA,Ashwani KUMAR

《能源前沿(英文)》 2014年 第8卷 第2期   页码 261-268 doi: 10.1007/s11708-014-0298-6

摘要: This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STATCOM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at = 0 s and then a sudden change of 3% from the 1% at = 0.01 s for a 1% step increase in power input at variable wind speed model.

关键词: isolated wind-diesel power system     adaptive neuro fuzzy interference system (ANFIS)     integral square error (ISE) criterion     load interaction    

An efficient method for the dynamic interaction of open structure-foundation systems

LIU Jingbo, GU Yin, LI Bin, WANG Yan

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 340-345 doi: 10.1007/s11709-007-0045-8

摘要: The structure-foundation system is transformed from an original open system into an approximately hermetic system through a viscous-spring artificial boundary. In addition, the seismic wave scattering problem is changed to a wave source problem by employing an equivalent seismic wave input method. Subsequently, the modal superposition method is adopted to solve the approximated hermetic system. This procedure is highly efficient in analyzing dynamic structure-foundation interaction problems in the time domain. Two numerical examples are presented to illustrate the characteristics of the proposed method: one is a wave source problem in 2-dimensions (2-D) elastic semi-infinite space, and the other is a dynamic structure-foundation interaction problem under seismic excitations. Compared with the traditional direct step-by-step integration method, the proposed method, with a sufficient number of modes included, can significantly reduce the computational time with almost the same precision. The results also indicate that the proposed method is more advantageous for solving large structure-foundation systems of many degrees of freedom.

关键词: structure-foundation interaction     superposition     interaction problem     freedom     efficient    

Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction

Hong LI,Ziding ZHANG

《农业科学与工程前沿(英文)》 2016年 第3卷 第2期   页码 102-112 doi: 10.15302/J-FASE-2016100

摘要: Plants are frequently affected by pathogen infections. To effectively defend against such infections, two major modes of innate immunity have evolved in plants; pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. Although the molecular components as well as the corresponding pathways involved in these two processes have been identified, many aspects of the molecular mechanisms of the plant immune system remain elusive. Recently, the rapid development of omics techniques (e.g., genomics, proteomics and transcriptomics) has provided a great opportunity to explore plant–pathogen interactions from a systems perspective and studies on protein–protein interactions (PPIs) between plants and pathogens have been carried out and characterized at the network level. In this review, we introduce experimental and computational identification methods of PPIs, popular PPI network analysis approaches, and existing bioinformatics resources/tools related to PPIs. Then, we focus on reviewing the progress in genome-wide PPI networks related to plant–pathogen interactions, including pathogen-centric PPI networks, plant-centric PPI networks and interspecies PPI networks between plants and pathogens. We anticipate genome-wide PPI network analysis will provide a clearer understanding of plant–pathogen interactions and will offer some new opportunities for crop protection and improvement.

关键词: plant–pathogen interactions     systems biology     omics     plant immunity     protein–protein interaction     network    

Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 363-384 doi: 10.1007/s11709-016-0353-y

摘要: In this paper, deck models of a cable stayed bridge are generated in ABAQUS-finite element program once using only CFD model (one-way fluid-structure interaction) and another by using both the CFD model and the CSD model together (two-way fluid-structure interaction) in a co-simulation. Shedding frequencies for the associated wind velocities in the lock-in region are calculated in both approaches. The results are validated with Simiu and Scanlan results. The lift and drag coefficients are determined for the two approaches and the latter results are validated with the flat plate theory results by Munson and coauthors. A decrease in the critical wind velocity and the shedding frequencies considering two-way approach was determined compared to those obtained in the one-way approach. The results of the lift and drag forces in the two-way approach showed appreciable decrease in their values. It was concluded that the two-way approach predicts earlier vortex induced vibration for lower critical wind velocities and lock-in phenomena will appear at lower natural frequencies of the long span bridges. This helps the designers to efficiently plan and consider for the design and safety of the long span bridge against this type of vibration.

关键词: vortex-induced vibration     fluid-structure interaction     Strouhal number     lock-in     kinetic energy    

An overview on the applications of the hesitant fuzzy sets in group decision-making: Theory, support

Zeshui XU, Shen ZHANG

《工程管理前沿(英文)》 2019年 第6卷 第2期   页码 163-182 doi: 10.1007/s42524-019-0017-4

摘要: Due to the characteristics of hesitant fuzzy sets (HFSs), one hesitant fuzzy element (HFE), which is the basic component of HFSs, can express the evaluation values of multiple decision makers (DMs) on the same alternative under a certain attribute. Thus, the HFS has its unique advantages in group decision making (GDM). Based on which, many scholars have conducted in-depth research on the applications of HFSs in GDM. We have viewed lots of relevant literature and divided the existing studies into three categories: theory, support and methods. In this paper, we elaborate on hesitant fuzzy GDM from these three aspects. The first aspect is mainly about the introduction of HFSs, HFPRs and some hesitant fuzzy aggregation operators. The second aspect describes the consensus process under hesitant fuzzy environment, which is an important support for a complete decision-making process. In the third aspect, we introduce seven hesitant fuzzy GDM approaches, which can be applied in GDM under different decision-making conditions. Finally, we summarize the research status of hesitant fuzzy GDM and put forward some directions of future research.

关键词: hesitant fuzzy set     hesitant fuzzy preference relation     group decision-making    

Unveiling the interaction mechanisms of key functional microorganisms in the partial denitrification-anammox

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1703-3

摘要:

● The availability of PD-anammox was investigated with higher NO3–N concentration.

关键词: PD-anammox process     Nitrite accumulation     COD     Microbial interaction    

Lignin-based polymer with high phenolic hydroxyl group content prepared by the alkyl chain bridging method

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1075-1084 doi: 10.1007/s11705-022-2272-x

摘要: Inspired by the importance of the phenolic group to the electron transporting property of hole transport materials, phenolic hydroxyl groups were introduced in lignosulfonate (LS) via the alkyl chain bridging method to prepare phenolated-lignosulfonate (PLS). The results showed that the phenolic group was boosted from 0.81 mmol∙g–1 of LS to 1.19 mmol∙g–1 of PLS. The electrochemical property results showed two oxidation peaks in the cyclic voltammogram (CV) curve of PLS, and the oxidation potential of the PLS-modified electrode decreased by 0.5 eV compared with that of LS. This result indicates that PLS is more easily oxidized than LS. Based on the excellent electron transporting property of PLS, PLS was applied as a dopant in poly(3,4-ethylenedioxythiophene) (PEDOT, called PEDOT:PLSs). PLS showed excellent dispersion properties for PEDOT. Moreover, the transmittance measurement results showed that the transmittance of PEDOT:PLSs exceeded 85% in the range of 300–800 nm. The CV results showed that the energy levels of PEDOT:PLSs could be flexibly adjusted by PLS amounts. The results indicate that the phenolic hydroxyl group of lignin can be easily boosted by the alkyl chain bridging method, and phenolated lignin-based polymers may have promising potential as dopants of PEDOT to produce hole transporting materials for different organic photovoltaic devices.

关键词: lignosulfonate     phenolic group     PEDOT:PLS     hole extract layer     energy level    

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 236-242 doi: 10.1007/s11783-010-0218-8

摘要: Copper and zinc interaction on clearance from water and distribution in different tissues was investigated for the freshwater mussel, , under laboratory conditions. Clearance rate of Cu or Zn from water was highly dependent on exposure concentration. Interaction effect was most evident at 300 μg·L Cu exposure and depressed the Zn clearance rate significantly ( <0.05). However, the presence of 100 μg·L and 300 μg·L Zn hardly affected the Cu clearance rate. The 300 μg·L Cu presence enhanced Cu accumulation in each tissue most significantly ( <0.01), but caused Zn content to decrease in the gills by 62% ( <0.05), viscera by 49% ( <0.05) and foot by 31% ( <0.05), and increase in the mantle by 97% ( <0.05) and the muscles by 243% ( <0.05) for different Zn exposure treatments. The response of metal accumulation in various tissues of the test mussels indicated that Zn transferred from the gills, viscera and foot to the mantle and muscles might be one of the important characteristics of the Zn regulatory mechanism by leading to a narrow range of Zn concentration in the different tissues.

关键词: interaction     mussel     copper     zinc     clearance     distribution    

High frequency group pulse electrochemical machining

WU Gaoyang, ZHANG Zhijing, ZHANG Weimin, TANG Xinglun

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 293-296 doi: 10.1007/s11465-007-0051-5

摘要: In the process of machining ultrathin metal structure parts, the signal composition of high frequency group pulse, the influence of frequency to reverse current, and the design of the cathode in high frequency group pulse electrochemical machining (HGPECM) are discussed. The experiments on process were carried out. Results indicate that HGPECM can greatly improve the characteristics of the inter-electrode gap flow field, reduce electrode passivation, and obtain high machining quality. The machining quality is obviously improved by increasing the main pulse frequency. The dimensional accuracy reaches 30 40 ?m and the roughness attained is at 0.30 0.35 ?m. High frequency group pulse electrochemical machining can be successfully used in machining micro-parts.

关键词: HGPECM     process     machining quality     passivation     inter-electrode    

Group III metabotropic glutamate receptors and drug addiction

null

《医学前沿(英文)》 2013年 第7卷 第4期   页码 445-451 doi: 10.1007/s11684-013-0291-1

摘要:

Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates).

关键词: group III metabotropic glutamate receptors     cocaine     amphetamine     alcohol     opiate    

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 198-204 doi: 10.1007/s11709-007-0023-1

摘要: The intensive soil-water interaction in unsaturated expansive soil is one of the major reasons for slope failures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrated that the soil-water interaction induced by seasonal wetting-drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deformation and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

关键词: strength     intensive soil-water     comprehensive     Infiltration     wetting-induced softening    

标题 作者 时间 类型 操作

The Group Interaction Field for Learning and Explaining Pedestrian Anticipation

Xueyang Wang,Xuecheng Chen,Puhua Jiang,Haozhe Lin,Xiaoyun Yuan,Mengqi Ji,Yuchen Guo,Ruqi Huang,Lu Fang,

期刊论文

A review of intelligent optimization for group scheduling problems in cellular manufacturing

期刊论文

Emergence mechanisms of group consensus in social networks

期刊论文

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication

期刊论文

Reactive power compensation of an isolated hybrid power system with load interaction using ANFIS tuned

Nitin SAXENA,Ashwani KUMAR

期刊论文

An efficient method for the dynamic interaction of open structure-foundation systems

LIU Jingbo, GU Yin, LI Bin, WANG Yan

期刊论文

Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction

Hong LI,Ziding ZHANG

期刊论文

Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span

Nazim Abdul NARIMAN

期刊论文

An overview on the applications of the hesitant fuzzy sets in group decision-making: Theory, support

Zeshui XU, Shen ZHANG

期刊论文

Unveiling the interaction mechanisms of key functional microorganisms in the partial denitrification-anammox

期刊论文

Lignin-based polymer with high phenolic hydroxyl group content prepared by the alkyl chain bridging method

期刊论文

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

期刊论文

High frequency group pulse electrochemical machining

WU Gaoyang, ZHANG Zhijing, ZHANG Weimin, TANG Xinglun

期刊论文

Group III metabotropic glutamate receptors and drug addiction

null

期刊论文

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

期刊论文